Adventures with Katka

Agendada

o Kafka intro

J il T

S D e e e e

4% LN SUhEhE R AR, : 54
S s Lt e «‘.r'.‘,“,'r e A R A

Kafka”

Kafka® 1s used for building real-
time data pipelines and streaming
apps. It 1s horizontally

scalable, fault-tolerant,

v N

- wicked

(57 Ry
o 2
A T A " 5 NS AvaE] .F 2 o ,#‘(A 5 W e »".;.“, Wl PR ¥l ,\?‘ i [AReT RS P i o« Ml 2
b 3 : “\)}" e % v ;) s 2)
s e S N Ao 2 E S A s R S, W A S Sl 1 P
= A 7 3 - p 3 fi

Kafka”

e Publish & Subscribe
e |Like a messaging service

e Process

g ‘*'\,‘ ;
e
45

Kafka”

e Concepts
« Cluster of Kafka servers aka brokers (ZooKeeper + Kafka)
e Storing streams of records in topics

* <key, value, timestamp> = record

* Core APIs

Ly

Stream
Processors

App

Consumers

Kafka”

e Communication
e Client <—> Server

e Simple, high-performance, language agnostic TCP protocol

e \ersioned and back-compatible protocol

Partition

0

e |
Partition 111

Old

Kafka”

e Producers
e record target: <topic, partition>

e partition = hash(<key>) % (#of partitions

* Produced Record(s) distribution and persistence (from producers to brokers

Kafka”

e Consumed Record(s) distribution (from brokers to consumers

 Each consumer group receives a separate copy of all records
from subscribed topic(s) (pub-sub

Consumer Groups

Kafka Cluster
Server 1 Server 2

PO J[P3

-— 'A_

7 KN N\
o [

Consumer Group A Consumer Group B

Kafka”

e Storage System

« Guaranteed / ack

o Same perf (50KB vs 50TB

Trivia

« Katka was developed in 2010 at LinkedIn.
_inkedIn was facing a problem of low latency
gestion of a large amount of data from the

ebsite into a lamlbda architecture wh
e able to process events

n real-time.

Qur use case

 Microservices app

* SpringBoot basea

Strimzi

 Kubernetes operator tor Katka

* Provides easy deployment of ZooKeeper and
Kafka clusters using StatefulSets

STRIMZI

ZOOKEEPER
CLUSTER

Zookeeper
Node

KAFKA
CLUSTER

Kafka
Broker

User
Operator

Manages
topics & users

Topic
Operator

<

Deploys
& manages

cluster Cluster

Operator

>

<+

>

OPENSHIFT CONTAINER PLATFORM / KUBERNETES

User
Custom
Resources

Kafka
Custom
Resources

Topic
Custom
Resources

that depends
/00Keeper c
system (Kube
d using

unted network volumes for files

Strimzi

Running one distributed system (Katka brokers

on another distributed system
uster) on top of a distributed
'netes) on top of virtual networking

| essons learned!

e Spring-Kafka — yes or no?

e Started with “yes”, ended with “no”

‘No” Spring-Kafka

e Producer

* Async-wrapper

* Recreating on fatal errors (some tatal responses from
roker(s) require re-establishing the producer

‘No” Spring-Kafka
» Consumer / listener

* |t's actually a client doing polling all the time

* With exponential re-try on failure (till max delay

| essons learned!

e Serialization

e Everything is Proto

| essons learned!

e Streams

* Window-Iing is easy and very useful

| essons learned!

» Cluster configuration

| essons learned!

* [opic configuration

Strimzi related issues

e Broker restart requires client restarts because
a new broker gets a new |IP address
Kubernetes stateful sets behaviour

e One day everything just stops working. There

Strimzi related issues

* Killing Kubernetes brokers results in unclean
shutdown (leaves index files corrupted

» Corrupted indexes are automatically rebuilt on
restart - may take a long time (several hours if
“you have many topics / partitions with a lot of

1 X iF ¢ d
R SR (R ey i e e R N X A NS B A
: ;
MY Tt R S R Il A SRS & 2)

Strimzi related issues

* Asymetric network failures

e 5 brokers

+ Brokers 1,2,3,4 complain they can’t connect

Configuration i1ISsues

e Jopic retention

e By default your records get deleted if older than a
week

C set retention perio

Key Lessons

o Kafka Cluster can suffer a failure

e [est your application with realistic data - in terms of
numbers of messages, sizes of messages, data
iIngestion rates.

)
R

