
ES6ES6
& The Future Of JS

Nenad Pečanac
Serengeti

Contents

1) History

2) Tooling

3) Syntax

4) Functions 4) Functions

5) Classes

6) Collections

7) Modules

8) Promises

9) The Future

1) History

History (1)

JavaScript was created in 1995 by Brendan Eich for Netscape.

It was developed as Mocha and released as LiveScript.

It was quickly renamed to JavaScript, as a

marketing move due to Java’s popularity.marketing move due to Java’s popularity.

New name caused a significant

misunderstanding of the language.

Language was created „in a week” and released incomplete.

Ambitious design influenced by Java, Perl, Scheme and Self.

History (2)

Microsoft released JScript for IE 3.0 in 1996.

Browser Wars: CSS, DOM, Scripting, Dynamic HTML ...

Netscape delivered JavaScript to Ecma International for

standardization in 1996.

ECMAScript was accepted as the compromised trade name.

History (3)

Release Year Changes

1 1997 First edition

2 1998
Editorial changes to keep the specification
fully aligned with ISO/IEC 16262 2 1998 fully aligned with ISO/IEC 16262
international standard

3 1999

Added regular expressions, better string
handling, new control statements, try/catch
exception handling, tighter definition of
errors, formatting for numeric output and
other enhancements

4 -
Abandoned due to political differences
concerning language complexity.

History (4)

Release Year Changes

5 2009

Adds strict mode, a subset intended to
provide more thorough error checking,
avoid error-prone constructs and clarifies
many ambiguities. Adds some new
features, such as getters and setters andfeatures, such as getters and setters and
library support for JSON.

5.1 2011
Aligned with third edition of the ISO/IEC
16262:2011.

6 2015 ECMAScript Harmony or ES6 Harmony.

7 ... Work in progress.

Current browser support

http://kangax.github.io/compat-table/es6/

2) Tooling

Tooling

JS-to-JS transpiler is currently required to run ES6.

Transpiler compiles code from the latest version into older

versions of the language.

As browser support gets better As browser support gets better

ES7 and ES8 will be transpilled

into ES6 and beyond.

Transpilers like Babel also provide

human-readable output.

3) Syntax

Let & Const

Let and const are alternatives to var when declaring variables.

Let is block-scoped instead of lexically scoped to a function.

Let is hoisted to the top of the block, while var declarations

are hoisted to top of the function.

for(let i = 0, l = list.length; i < l; i++) {

// do something with list[i]

}

console.log(i); // undefined

Let & Const

Const is also block-scoped, hoisted and must be initialized

Assigning to const after initialization fails silently

(or with an exception under strict mode).

const MY_CONSTANT = 1;

MY_CONSTANT = 2 // Error, attempt to changeMY_CONSTANT = 2 // Error, attempt to change

const SOME_CONST; // Error, not initialized

Object properties can still be changed

const MY_OBJECT = {some: 1};

MY_OBJECT.some = 'body';

Template Strings

Template strings provide syntactic sugar for constructing

strings similar to string interpolation features in Perl, Python..

var text = (

`foo`foo

bar

baz`)

var name = "Bob", time = "today";

`Hello ${name}, how are you ${time}?`

Destructuring

Destructuring provides binding using pattern matching,

with support for matching arrays and objects.

// Array matching

var list = [1, 2, 3]

// Object matching

var robotA = { name: "Bender" };var list = [1, 2, 3]

var [a, , b] = list // a=1, b=3

[b, a] = [a, b] // a=3, b=1

var robotA = { name: "Bender" };

var robotB = { name: "Flexo" };

var { name: nameA } = robotA;

console.log(nameA); // "Bender„

var { name: nameB } = robotB;

console.log(nameB); // "Flexo"

// Fail-soft matching
var [missing] = [];
console.log(missing); // undefined

Object Literals

Object literals are extended with several new features:

var obj = {

// __proto__

__proto__: theProtoObj,

// Shorthand for ‘handler: handler’

handler,handler,

// Methods

toString() {

// Super calls

return "d " + super.toString();

},

// Computed (dynamic) property names

['prop_' + (() => 42)()]: 42

};

4) Functions

Arrow Functions

Arrows are a function shorthand using the

param => return_value syntax:

// Expression bodies

var odds = evens.map(v => v + 1);

var nums = evens.map((v, i) => v + i);var nums = evens.map((v, i) => v + i);

var pairs = evens.map(v => ({even: v, odd: v + 1}));

// Statement bodies

nums.forEach(v => {

if (v % 5 === 0)

fives.push(v);

});

Arrow Functions

Arrow functions inherit THIS value from the enclosing scope:

this.nums.forEach((v) => {

if (v % 5 === 0)

this.fives.push(v)

})

In ES5 we have to use self/that trick:

var self = this;

this.nums.forEach(function (v) {

if (v % 5 === 0)

self.fives.push(v);

})

5) Classes

Classes (1)

ES6 classes are syntactic sugar over the

prototype-based OO pattern.

Classes are a well-debated feature of ES6.

Some believe that they go against the prototypal nature of

JavaScript, while others think they lower the entry barrier

for beginners and people coming from other languages.

Classes (2)

class Vehicle {

constructor(name) {

this.name = name;

this.kind = 'vehicle';

}

getName() {

return this.name;

}

}

// Create an instance

let myVehicle = new Vehicle('rocky');

6) Collections

Iterators

let fibonacci = {

[Symbol.iterator]() { // default iterator for an object.

let pre = 0, cur = 1;

return {

next() { // required methodnext() { // required method

[pre, cur] = [cur, pre + cur];

return { done: false, value: cur }

}

}

}

}

For .. of Loop

For .. of loop is new loop for all iterables.

It starts by calling the [Symbol.iterator]() method

which returns a new iterator object.

An iterator object can be any object with a next() method.

for (var n of fibonacci) {

// truncate the sequence at 1000

if (n > 1000)

break;

console.log(n);

}

Map + Set

// Maps

var m = new Map();

m.set("hello", 42);

m.set(s, 34);

m.get(s) == 34;m.get(s) == 34;

// Sets

var s = new Set();

s.add("hello").add("goodbye").add("hello");

s.size === 2;

s.has("hello") === true;

WeakMap + WeakSet

Weak collections allow GC collection of their keys.

// Weak Maps

var wm = new WeakMap();

wm.set(s, { extra: 42 });wm.set(s, { extra: 42 });

wm.size === undefined

// Weak Collections are not enumerable and do not have size

// Weak Sets

var ws = new WeakSet();

ws.add({ data: 42 });

// If data has no other references, it can be GC collected

7) Modules

Modules (1)

Language-level support for modules for component definition.

Codifies patterns from AMD, CommonJS ..

Runtime behaviour defined by a host-defined default loader.

Implicitly async model – no code executes until requested

modules are available and processed.

Modules (2)

// lib/math.js

export function sum(x, y) {

return x + y;

}

export var pi = 3.141593;export var pi = 3.141593;

// app.js

import * as math from "lib/math";

alert("2π = " + math.sum(math.pi, math.pi));

8) Promises

Promises

Promises are used for asynchronous programming.

Promises are first class representation of a value that may

be made available in the future.

Promises are used in many existing JavaScript libraries.

Promises

function resolveUnderThreeSeconds (delay) {

return new Promise(function (resolve, reject) {

setTimeout(resolve, delay);

// once a promise is settled, it’s result can’t change

setTimeout(reject, 3000);

})

}

resolveUnderThreeSeconds(2000); // resolves!

resolveUnderThreeSeconds(7000);

// fulfillment took so long, it was rejected.

9) The Future

Future releases (1)

ES7 is due 12 months after ES6.

TC39 (the ECMAScript standard committee)

is embracing 12 month release cycle.

New, naming convention:

ES6 = ES2015

ES7 = ES2016

ES8 = ES2017 ...

Completed features will be published once a year,

others will be scheduled for the next release.

Future releases (2)

„ECMAScript is a vibrant language and the evolution of the

language is not complete. Significant technical enhancement

will continue with future editions of this specification.”

... ES 5 specification

Future releases (3)

New proposed features for ES7:

• concurrency and atomics,

• zero-copy binary data transfer,

• number and math enhancements,

• observable streams, • observable streams,

• better metaprogramming with classes,

• class and instance properties,

• operator overloading,

• value types (first-class primitive-like objects),

• records, tuples, traits ...

The End

To be continued ...

