
Kapsch Group

Meeting non-functional requirements with

Spring Boot Actuator
Vedran Pavić, Kapsch CarrierCom d.o.o.

Kapsch Group

About the Author

 Software Development Engineer at Kapsch CarrierCom d.o.o. since 2011

 Developing solutions in Telco industry, primarily related to Number Portability

 An active contributor in open-source community (mostly Spring related projects)

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 2

Kapsch Group

Non-functional requirement vs Actuator

 In systems engineering and requirements engineering, a non-functional requirement is a requirement that

specifies criteria that can be used to judge the operation of a system, rather than specific behaviors.

(https://en.wikipedia.org/wiki/Non-functional_requirement)

 An actuator is a type of motor that is responsible for moving or controlling a mechanism or system.

(https://en.wikipedia.org/wiki/Actuator)

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 3

https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Actuator

Kapsch Group

Enter Spring Boot Actuator

 Builds on Spring Boot foundations to provide production-ready features

 Focus on monitoring and management over HTTP, but supports other protocols as well

 Highly customizable and extendable, embraces other technologies

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 4

Kapsch Group

Endpoints

 Enable monitoring capabilities for your applications (primarily over HTTP)

 Wide range of endpoint available out of the box: health information, application metrics, general

application information, thread dump, environment information, trace information… plus many others

 Customizable via application properties

 Optional hypermedia support and endpoint browser

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 5

Kapsch Group

Implementing Custom Endpoint

 Acutator endpoints are @Beans that implement Endpoint interface (or more specialized MvcEndpoint)

 Easily implement your own using AbstractEndpoint and AbstractEndpointMvcAdapter classes

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 6

Kapsch Group

Health Information

 Check the status of your application – useful for monitoring software, load-balancers, etc.

 Overall health information is contributed by multiple health indicators

 Many health indicators available out of the box, depending on what you use in your application (JDBC

data source, JMS broker, Mail server…)

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 7

Kapsch Group

Implementing Custom HealthIndicator

 Actuator health indicators are @Beans that implement HealthIndicator interface

 Easily implement your own using AbstractHealthIndicator class (also see

CompositeHealthIndicator and HealthAggregator)

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 8

Kapsch Group

Application Information

 Exposes various application information

 Information is collected from InfoContributors – environment/git/build contributors are provided

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 9

Kapsch Group

JMX

 Acutator endpoint are also available over JMX

 JMX operations are available over HTTP using Jolokia

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 10

Kapsch Group

Remote shell

 Monitoring is also possible via remote shell access (SSH, Telnet) using CRaSH

 Wide range of commands and utilities available out of the box – providing your own commands is easy

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 11

Kapsch Group

Metrics

 Actuator automatically records system and HTTP metrics and exposes them using endpoint

 CounterService and GaugeService are available to record your own metrics – can be exposed using

PublicMetrics @Beans

 Pluggable strategies for metric export and aggregation

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 12

Kapsch Group

Audit Events

 Infrastructure for auditing – Spring Security’s authentication and authorization events are translated to

Actuator’s AuditEvents

 AuditEventRepository implementation is used for storing and retrieval of events

 Simple to use for your own AuditEvents

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 13

Kapsch Group

Bonus

 Spring Boot’s build plugins allow creating fully executable JARs - can be installed as a system service

 Can be used to install application as a init.d or systemd service

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 14

Kapsch Group

Resources

 Project page: http://projects.spring.io/spring-boot/

 Issue tracker: https://github.com/spring-projects/spring-boot/issues

 Source code: https://github.com/spring-projects/spring-boot

 Sample project: https://github.com/vpavic/javacro16-spring-boot-actuator

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 15

http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
http://projects.spring.io/spring-boot/
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot/issues
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/spring-projects/spring-boot
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator
https://github.com/vpavic/javacro16-spring-boot-actuator

Kapsch Group

Questions

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 16

Kapsch Group

Vedran Pavić

vedran.pavic@kapsch.net

https://www.kapsch.net/hr/kcc

https://github.com/vpavic

Meeting non-functional requirements with Spring Boot Actuator | JavaCRO '16 17

mailto:vedran.pavic@kapsch.net
mailto:vedran.pavic@kapsch.net
https://www.kapsch.net/hr/kcc
https://www.kapsch.net/hr/kcc
https://github.com/vpavic
https://github.com/vpavic
https://github.com/vpavic

